Market Tells – Part 2

Market Tells – Part 2

In the Market Tells – Part 1 blog, I introduced the concept of market tells as an enduring trading edge that can be used to enhance returns over the long term. Developing the ability to identify market tells and act on these signals takes practice. It’s important to keep track of trading results to get better and gain confidence to jump on these opportunities in size when they occur.

In this blog, I first clarify thoughts on a few instances when the market tell guidelines are not met. The most important guideline for identifying a market tell is the 80% rule, which states that to consider market action as unusual (and thus providing a market tell), the usual behavior must occur at least 80% of the time. Otherwise, it’s just too difficult to associate the unusual behavior with a market tell rather than normal market gyrations. Next, I’ll review three more market tell techniques that can be used to trade asset classes. I’ll close with some thoughts on crowded trades and implementation hints.

Initial Thoughts

On some days, one sector may be up while the rest of the market is down. If the behavior is explained by news, then this price action is totally normal. Even without news, this sort of divergence occurs often enough to consider it normal activity. If a security is illiquid, such as a closed-end fund, then this action might be correcting a stale price from the previous day, which is not unusual at all.

To contrast, if all risky assets are aggressively moving higher (such as when the S&P 500 is up 2%+ for the day), and one sector is flat, then this behavior is much more unusual and may be the basis of a market tell, especially if no news explains the behavior. However, we need to remember that the time scale of this edge is on the order of a day or two.

Watching how a stock or asset class reacts to news associated with a known announcement date (such as an earnings call or a central bank news release) is very difficult to use as a market tell. There is usually an enormous amount of trader attention to these known release dates, which probably means there’s no trading edge. Much of the news and all the probabilistic outcomes have been priced in before the announcement, which is another way of saying the pre-announcement price is set such that there is no edge in buying or shorting the security ahead of the announcement, or in fading or chasing the post-news reaction.

Finally, watch out for interpreting short-term market action when there’s a lot of unwinding of positions. For instance, at the first of the year, it’s best to wait a week before interpreting market action as hedge funds unwind their end-of-year trades. This sort of behavior can occur during bear markets also. This is a very chaotic time when a lot of unwinding is occurring – it’s a very difficult time to interpret market action versus any sort of playbook. Wait until the dust settles and stocks start moving in unison before interpreting market action.

Divergences and Market Tells

In discussing market tells, I’ve used the term “divergence” to describe local price action where an asset class’s price or relative strength line is diverging from normal expectations. Searching for divergences is a staple of technical analysis.1,2 In the past I have falsely interpreted a divergence as a market tell. These misinterpretations generally occurred during relatively quiet times in the market, usually during bull markets, when the 80% rule did not apply.

Ask a market strategist about divergences, and the first thing that comes to their mind is the case where the stock market is making new highs while some other risky asset class is moving lower. For instance, from mid-2014 to mid-2015, the S&P 500 was moving higher, while junk bond markets where moving lower. This isn’t supposed to happen, and such a divergence is often interpreted as a warning of future weakness in the S&P 500, leading to a convergence of the two markets. (more…)

Market Tells – Part 1

Market Tells – Part 1

In any competitive field, the awareness of tells can provide a significant and enduring edge. Most people think of poker when they hear about tells.1 Is a player acting strong to encourage other players to fold? Does a player seem nervous when they throw their chips in the pot? Can any useful information about an opponent’s poker hand be gleaned from these actions?

Tells occur in many aspects of life and competition. For most sporting events, searching for tendencies in an opponent’s play is an integral part of game preparation. In the home arena, parents look for facial clues when interrogating a fidgety teenager as the youngster explains what she’s doing on a Saturday night.

Tells are an important source of feedback when trading the financial markets. I call these “market tells” to distinguish between the variety of tells that occur in other forms of competitive environments (more on this distinction later). A market tell is a powerful approach to sensing moments in time when market participants are not positioned correctly.

A simple example of a market tell is a stock that’s acting strong when it should be weak. Perhaps the stock is in an uptrend when extremely bearish news is released about the prospects of the company (such as a product recall). Unexpectedly, after a momentary dip on the news, the stock price continues to go higher. That’s a positive tell for future outperformance.

Properly identified, tells can get you out of a trade much sooner than waiting for a technical trend-following sell signal. Tells can help you identify future outperforming asset classes. They can provide positive feedback that a current trade is working. No matter what your trading discipline or time scale, searching for market tells is a great trading edge.

The more you clarify and develop your thoughts around market tells, the more confidence you’ll have to quickly jump on trades and to trade with high conviction and size. I began noticing market tells soon after I started trading in the late 1990s. In 2005, I decided to be more disciplined about it by keeping track of results. When I observed a tell, I printed out a chart and documented what I expected to happen, and then slipped the paper into my “market tells” folder. I also traded on this information, and over the next four years, avoided looking at the results.

In mid-2009, I checked to see how these predictions worked. The success rates for these trades at both the short and intermediate time scales were excellent. These results piqued my interest to further investigate and refine the use of market tells in my trading. In 2014, I performed yet another trade analysis, and in 2017, I find myself slightly reshaping my views while writing this blog.

 

Classification of Tells

To provide a framework for thinking about market tells, I’ll review various forms of tells. (more…)

Is Momentum a Dead Stock-Picking Factor?

Is Momentum a Dead Stock-Picking Factor?

Does momentum really work? Can you outperform benchmarks by simply holding top-performing securities? I have my doubts, but I’ve decided to be open-minded and revisit this idea.

A decade or two ago, we used momentum extensively to select equity asset classes and avoid the poor performers. I lost faith in momentum somewhere in the 2009 to 2010 time frame after the premium suffered a historically large drawdown in 2009.

We turn off momentum at the beginning of new bull markets, so we didn’t suffer from this drawdown, but hedge fund assets had grown exponentially to over $2 trillion at the time, and momentum mutual funds were being introduced. The strategy appeared to be very crowded.

Momentum was a great trading edge for many decades. Now it’s just too easy to do and too popular with an enormous amount of assets implementing momentum in various forms.

Let’s define the momentum effect. The idea is that top performing assets over a 3 to 12 month time frame tend to outperform over a similar time frame. Poor performing assets tend to underperform in the near future. Momentum is sometimes confused with trend following.1 Momentum ranks recent performance among peers, such as ranking U.S. stocks among each other, or U.S. sectors among each other, or individual country stock market indices among each other. Trend following looks at absolute prices and asks if prices are in an uptrend or downtrend, and shifts to cash or shorts an asset when prices are in a downtrend. Momentum indices remain exposed to falling prices, and thus can suffer large losses during bear markets. Long-short momentum portfolios can also suffer enormous equity-like drawdowns.

A typical momentum measure is 12-month performance, although the sweet spot look-back period can vary from 6 to 15 months. For really short time periods, one month or less, there’s a short-term reversal effect where top performers typically underperform during the next month. 2-4 As the look-back period extends beyond a few years, recent top performers begin to lag the averages in the future and the bad performers tend to do better as the latter are now underowned and better valued with higher expected returns. (more…)

Avoid Crowded Trades

iStock_38050578_XSmallPeriods of high volatility, sharp sell-offs and bear markets create an environment rich in trading and investment opportunities for those that remain level-headed and prepared. As prices recover and the next equity bull market develops, all risk-on trades generally work. Eventually the bull market ages, and finding new trading ideas becomes a bit more challenging.

Developing successful trades in this environment requires creativity and hard work, searching for ideas that are good, yet not so well known as to be crowded, and therefore ineffective. This is easier said than done. Most traders tend to pile into similar mid- and late-cycle trades, which are often marginal with respect to an edge, or tend to be based on economic predictions and/or secular themes rather than exploiting another group of investors.

When too many traders are in the same trade, it becomes crowded. As you might expect, crowded trades lose their edge, and thus should be avoided. That is a good rule to live by, but even the best portfolio managers will occasionally join the crowd due to an extremely high conviction level associated with a trade. An asset class trader must then be aware that the price action associated with the trade will change when there are lots of fellow portfolio managers in the mix.

The concept of crowded trades has become standard trading lingo, much more so than it was 10 to 15 years ago, likely due to the growing popularity of hedge funds over that time period.1,2,3 Yet as far back as the 1960s, crowded shorts were a problem for hedge fund managers.4 In periods of limited opportunities, traders often read similar research reports, are attracted to the same outperforming assets, and in general, lack sufficient imagination to develop a new trade idea. In addition, larger hedge funds tend to implement global macro and asset class level trades due to capacity constraints.

Definition of a Crowded Trade

Whenever there’s too much money or too much attention showered on an asset type, you should expect lower returns, or losses in the case of a trade.

Pundits and fund managers throw around the crowded trade language all the time, often to justify their own positioning. (more…)

Seasonality

iStock_000085081023_SmallIn this blog I’ll examine the old “sell in May and go away” seasonal pattern associated with risky assets. It’s timely to consider this pattern since the markets are now entering the seasonally weak period. Furthermore, stock market performance has been relatively weak in a number of recent “strong periods,” such as in January 2016, November 2015 through January 2016, and November 2015 through April 2016, which often provides a foreboding tell of additional weakness during the traditional seasonal weak period of May through October.

Seasonality as a trading edge is also worth considering because trend following has become very trendy these days, with billions of dollars flowing into this discipline every year via managed futures funds. The problem with these flows is that the effectiveness of trend following diminishes as more assets are devoted to the discipline, since trend following is naturally capacity constrained due to high turnover (>200%) and the liquid demanding nature of trading. It seems that trend following is crowded.

At this point in time, it may be interesting to examine other market timing signals as an alternative way to add and reduce risk exposure. One such approach is seasonality, which is probably underutilized by the asset class trading community and thus might be more effective than trend following over the near term.

The seasonal pattern has been well known for decades – the stock market’s best period is from November through April, and its poor-performing period is from May to October. This is not the case every year, but on average this seasonal pattern has held up really well with stock markets around the world for decades.

Academics call this pattern the Halloween effect since the buy signal is generated by buying at the close on October 31 every year and the sell signal is on every April 30. What’s amazing is that seasonality has not been arbitraged away, even though the cost of implementing a seasonal trading system has been low since the 1980s. The old adage of “sell in May and go away” still works! (more…)

Stale Pricing

iStock_000016105828_XSmallA stale pricing edge occurs when a security or fund can be purchased or sold at a price that is stale with respect to current up-to-the-second information. This trading edge is as fleeting as a twenty dollar bill sitting on a busy sidewalk. For instance, if the price of a U.S. equity closed-end fund is sitting at bid $10, ask $10.10 for most of the day without trading activity, and the S&P 500 trades up 2% during the day, the ask price of $10.10 may be too low, and therefore, stale. Then buying at the bid can provide a risk-free profit (if hedged by an S&P 500 short) of at least 10 cents, since the fund should be trading at $10.20/$10.30.

You’ll never find stale prices with liquid large cap equities or ETFs. Only rarely do they occur with securities that don’t trade very often, such as closed-end funds. The stale price edge is not backtestable with price data since simulated orders would have affected prices at the time.

Generally, we’d expect stale price opportunities to occasionally occur with illiquid stocks that trade with a wide bid-ask spread, with very little size offered. Stale prices may also emerge when transaction costs are high (perhaps due to a financial transaction tax), or when markets are highly volatile. In the heat of a stock market crash, when 10% up and down days are the norm, we’d expect a few stale price opportunities to emerge. Getting back to the U.S. equity closed-end fund discussed above, if the S&P 500 ramped 5% in the last hour of the day, and the closed-end fund lagged up only 2%, then perhaps that’s an opportunity to buy at the ask, and expect its price to eventually catch up (possibly the next morning).

Funds are the bread-and-butter tools for asset class traders – ETFs, ETNs, closed-end funds, open-end funds, limited partnerships, etc. There are stale pricing opportunities that can occur with investment funds from time to time.

Most notable was the stale pricing associated with open-end mutual funds. This advantage is no longer available today, but it represented a structural edge from the 1980s to the early 2000s. In his book The New Market Wizards, Jack Schwager profiled one trader, Gil Blake,1 who used this edge in the 1980s to produce an annualized return of 45% per year over 12 years. Mr. Blake actively traded Fidelity sector funds to generate those returns, switching in and out of funds every day. Interestingly, he was unaware of why the strategy worked, when what he was doing was systematically exploiting stale pricing. At that time, mutual fund prices exhibited a daily serial correlation because many of the securities held in the fund had stale prices when used to calculate the daily close-of-business net asset value (NAV). (more…)